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l b s m c L  A classical \errion ofthe Magnus expansion well suilcd to srudying adiabatic time- 
evolution is buili up. The method improvcs the adiabatic approximalion while being symplectlc 
in chmner.  It is shown that the fint-ordsr approximation is d r u d y  W c m e  enough even far 
from the adiabatic limil. An mnalyyis ofthz changes suffered by the adiabatic mvvlanl Of 3 l inea 
H h h o n i a n  s)stem dong its he-evolution illustnlcs pan of the above results. Asymptcujc 
formulae for such chmges =e also obtained N ith explicit compumion of prc-exponential faclon. 

1. Introduction 

Explicitly timedependent problems present special difficulties in classical mechanics. 
However, they deserve detailed study because very interesting properties emerge when, even 
for simple linear systems, some parameters are allowed tnvary with time. For instance, 
particular recent interest has been devoted to systems in which adiabatic evolution originates 
geometric contributions to the action-angle variables [l-31 or to the motion of spinning 
neutral particles in inhomogeneous magnetic fields [4]; just to quote a few examples. 

In this paper we deal with the approximate computation of trajectories in phase space 
for time-dependent linear one-dimensional Hamiltonians as well as a related observable of 
physical interest: the adiabatic invariant. We develop a technique especially well suited 
to treating slow variation of external parameters of the system. The basic idea consists 
in applying the classical version of the Magnus expansion (ME) [5,~ 61 using a particular 
coordinate system. By solving the instantaneous Hamiltonian, a solution in the adiabatic 
limit is obtained which we will consider as a zero-order approximation. The first-order 
correction stems properly from the application of the ME and appears to be accurate enough 
in the intermediate regime, even far away from the adiabatic limit. The results are applied 
to the generalized harmonic oscillator (GHO) in one degree of freedom. The method may 
be viewed as a version for classical mechanics of the recently -proposed adiabatic Magnus 
expansion [7] for quantum systems. 

A particular aspect of the adiabatic evolution of classical systems that has received 
considerable attention in the literature is the subject of adiabatic invariants. As is well 
known an adiabatic invariant is exactly conserved only in the adiabatic Iimit, i.e. under 
the assumption that the variation of the extemal parameters during the evolution is 
infinitely slow. However, the ratio between the proper time of the system (which fixes 
the timescale) and the characteristic time of variation of parameters has actually a finite 
value. Consequently the adiabatic invariant does generally vary because the variation of 
the parameters takes place in a finite time-lapse. The way in which these changes occur 
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has been the subject of many works over the years [S-111. We shall show how our ME can 
help in computing this observable. 

The method we propose furnishes the final results in terms of quadratures and, provided 
they converge, can be used either for finite or infinite timeintervals. If we are interested only 
in the later case then the integrations can be approximated by asymptotic methods, leading, 
in general, to analytical results. In this paper we carry out the application of asymptotic 
methods to such quadratures. Besides, we also employ an altemative method based on the 
usual asymptotic analysis of the differential equations of motion. As a sequel, we obtain 
a new improved formula to describe asymptotic changes in the adiabatic invariant which, 
incidentally, has a component with geometrical character. The so-called preexponential 
factors are also explicitly obtained. We note in passing the interest recently raised up about 
the computation of such prefactors in the context of quantum mechanics [12, 131. 

The paper organizes as follows. In section 2 we introduce the adiabatic classical 
Magnus expansion (henceforth referred to as ACME), define the adiabatic approximation and 
find the first-order correction to the adiabatic trajectories. Notation and concepts concerning 
the adiabatic invariant are given in section 3. It also includes ACME corrections to the 
computation of the variation of this observable up to first order. In section 4 an asymptotic 
evaluation of such first-order result is given, as well as an alternative treatment based on 
the asymptotic analysis of the differential equations of motion. Section 5 contains a number 
of illustrative examples allowing a comparison between various approximate results and the 
exact numerical solutions. Our conclusions are contained in section 6. 

2. The ACME 

Let us characterize the state of a Hamiltonian dynamical system by the 2N-dimensional 
vector 5 = (4. p )  whose components are the generalized coordinates and momenta and let 
H(& t )  be the corresponding Hamiltonian function. The trajectories in phase space can be 
viewed as the result of a time-dependent transformation acting on initial values, 

€(TI = M(r,roo,5(ro)). (1) 

We have introduced the new variable T = et,  where 116 is the timescale. The equations 
of motion for 5 can be formally expressed as an evolution equation for the symplectic map 
M, namely 

ML-H 
d M  1 
d r  E 
_ = -  

where L-H is the Lie operator associated to the function -H(E(so) ,  t ) .  This (in general 
nonlinear) evolution operator M is the starting point in some formulations of classical 
mechanics based on Lie series [14]. 

What identifies a linear system is the fact that the map M can be represented by a 
2N x 2N matrix M. The time evolution is then govemed by the differential equation 

1 
M = -SM M(r0,ro) = I 

E 
(3) 

where S is a matrix obtained from Hamilton equations, I is the 2N x 2N identity matrix 
and the dot stands for derivative with respect to r. For linear systems the above equation is 
equivalent to (2). It is worthwhile noting that an explicit time-dependence in the Hamiltonian 
can always be dropped out Ly increasing the number of degrees of freedom. However, the 
dynamics expressed in this 2(N + I)-dimensional phase space becomes nonlinear in general. 
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Magnus expansion in the standard form [5] proceeds to find a solution to (3) of the form 
M(7, SO) = exp Q(r ,  to) with Q ( q ,  to) = 0. In the general case, the time-evolution map 
reads M = exp LQ. in terms of the Lie operator LQ associated with the Magnus observable 
a. We have employed the same notation (a) for both situations. Yet in the first case Q is 
a matrix whose matrix elements are functions o f t  but not of the phase-space coordinates 
E and in the second one it stands for an observable, i.e. a function defined in phase space: 
S2 = Q(& 5 )  Both, Q and LQ satisfy their own differential equation which is solved in the 
form of series: S2 = C ai. The first two terms in that expansion read 

Square brackets stand for the usual commutator: [ A ,  B ]  = AB - B A .  Similar equations 
hold for the general case where the corresponding Lie operators replace matrices. Higher- 
order terms are given in form of multiple commutators and can be computed by recursive 
procedures [Pi]. Notice the important fact that the symplectic character in M is always 
kept no matter the number of terms retained in the series for Q. It is a salient feature of 
the exponential representation for M . 

Direct application of the ME in (3) turns out to be very appropriate when H presents 
sudden time dependence. As a matter of fact, in the sudden limit the ME to first-order 
furnishes the exact solution. The situation is different for the adiabatic regime and henceforth 
we focus our attention on this aspect of the time-evolution. 

Let us consider a non-singular time-dependent transformation E R ( t )  = R - ' ~ ( S )  which 
brings the state of the system (q(r), p ( r ) )  into new variables ( q R ( t ) ,  p ~ ( 7 ) ) .  If M(7, ro) 
governs the evolution of E(r) then the evolution of the system in terms of the new variables 
is given by M R ( r ,  SO) = R-'(s)M(t, ro)R(rd, so that 

<R(r) = MR(S.to)&(To). (5 1 

M R = S R M R  MR(to.to)=I (6) 

It is straightforward to verify that M R  obeys the equation 

with 

S R  = -R- 'SR - R - ~ R .  (7) 

It is clear that an appropriate choice of R may render dynamics very much simpler than 
it was in the original coordinate system. Obviously, no systematic procedure exists to find 
such a transformation. But as far as we are interested in the adiabatic regime an obvious 
point of reference is the time-independent case. Then great simplification occurs if S is 
rendered diagonal. This suggests to take in the adiabatic regime R so as to instantaneously 
diagonalize the matrix S ( t ) .  The diagonal piece A = (l/€)R-'SR - diag(R-'R) in (7) 
should then be much more important than the remainder term of R-'k Mathematically, 
the above assertion, valid when the eigenvalues of S are purely imaginary, is based on the 
Riemman-Lebesgue lemma [7]. This procedure leads to interesting approximation schemes 
116, 171. 

It is worth noticing that the piece R-'R in (7) has a pure geometrical origin for it 
depends just on the coordinate transformation R and not on the slowness parameter E .  

The diagonal piece A can be readily integrated by making the factorization 

E 

MR = exp (i: dx A(x))Mk. (8) 
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Thus Mk satisfies 

Mk =SkMk sk = e x p ( - ~ d r d ( x ) ) ( S n - A ) e r p ( ~ d r A ( x ) ) .  (9) 

Now, the simplest approximation one can do is MX = I, then 

M R  N exp dxA(x) . (10) Lor 
This is the well known adiabatic approximation (AA) which is exact in the limiting case of 
vanishing E .  Notice that the above map keeps the symplectic character of the approximate 
time-evolution. 

The AA can be improved by taking into account the effects of non-diagonal terms, namely 
looking for more complete approximate solutions to (9). It is at this point that we introduce 
the ACME. As said above, in linear cases we have Mk = exp S2, where 3 = 31 + 3 2 . .  . . 
Explicitly, 

QI = aXSX(x). (11) 

Let us illustrate with the one-dimensional GHo the behaviour of phasespace approximate 
trajectories. The GHO Hamiltonian reads 

H ( q ,  P, 7) = $[x(z )q2  +zY(r)qp  + z(r)p21. (12) 
In the particular case when X, Y, Z are constant the orbits are ellipses for XZ > Y 2  and 
hyperbolae for XZ < Y2. The special situation XZ = Y 2  corresponds to a bifurcation in 
parameter space and orbits are straight lines. Departures from the above behaviour appearing 
when a timedependence occurs will be analysed with the ACME. In the following we shall 
assume that X(t) ,  Y(r ) .  Z(7) are regular enough functions for all the following expressions 
to have a meaning. Futhermore, we rake X(r )Z(r )  > Y2(r)  for all real r although formal 
results can also be attained in the opposite case. 

The matrix S now reads 

s=( -x -Y z )  
and can be diagonalized whenever XZ # Y 2  (i.e. provided no instantaneous bifurcation 
occurs) by the matrix 

where h = z k m  are the insthaneow eigenvalues of S(r) .  Hereafter we put 
h io. It is straightforward to verify that 

where we have defined the functions 

(Y = y[(iG+ Y ) z  - (iw+ Y ) Z ]  
6 = y[(iG + PIX - (io + Y ) X I  
y = [Zio(io + Y)]-' . 

Eventually we get 
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with 

w Y Z - z Y  
2wz (U + iY)Z 

w'(r) = - + 
E 

so that MR(z. m) = exp 

(9) we use the ME to approximate its solution 
-a Mk. NOW, since Mk satisfies the evolution equation 

( a  O I  

Mk E expQ1 a1 = lor &Sk(x). (20) 

After straightforward calculation we obtain the following approximate expression for M R: 

where 

h ,  ( r )  = lo7 dx a ( x )  e-k(x*ro) 

(22) 
Notice that the AA is recovered from (21) taking formally the limit q -+ 0, which in turn 
corresponds to hi -+ 0 (i = 1,2). The reason  why h l ,  hz tend to zero in the adiabatic limit 
stems from the oscillatory character of the integrand in (22). 

Let us take a specific form of X, Y, Z in order to check the behaviour of the above 
trajectories in phase space. For the sake of simplicity we particuIarize the Hamiltonian in 
(12) to 

X = I + $ s e c h ( r )  Y = O  Z = 1 .  (23) 
The corresponding H is then asymptotically (r + i o o )  a simple harmonic oscillator of 
unit frequency. The parameter c controls the intensity of the perturbation. We shall study 
the modifications introduced by a timedependence whose characteristic timescale is given 
by T = 1 / ~ .  Our goal is to compare the trajectories in phase space obtained with the 
first-order ACME and those obtained by exact numerical integration as well as in the AA, for 
different values of the parameters. 

As a first case we take T = 10, 5 = 0.9. We note in passing that the intensity of the 
perzurbacion is 90% of the non-perturbed problem. In figure 1 we have plotted the exact 
trajectories (full curve), the AA (dash-dotted curve) and the first-order ACME trajectories 
(dashed curve). In the time interval represented by (-1 < t < 10) the three lines match 
each other. A comparison between the characteristic time T and the natural period of 
the non-perturbed system indicates that the case at hand is a priori only a moderately 
adiabatic situation. Even so, the AA is already a good approximation and therefore the 
ACME correction is not properly necessary. Yet it is a first verification of our scheme. 

Figure 2 is similar to figure 1 except that now T = 1. This situation is far from 
adiabaticity. Consequently, the AA should fail. It is what we observe in figure 2. Instead, 
the first order ACME fits pretty well the exact trajectory. The same trend holds even for 
higher values of T-' although, as could be expected, the agreement progressively worsens. 

These are representative examples of results we obtain by means of the ACME. This 
method to approximate the solution of time-dependent problems allows one to improve the 
AA in the sense that the results computed are good not only in the adiabatic regime but for 
intermediate situations too. 

hz(r) = loz dxp(x)e+2"(*~") 11' = hl(t)hz(r). 
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Figure 1. Trajectories in phase space for the Ono given in (23). Here T = IO, = 0.9. The 
exact result (full CUNP), first order of ACME (doned curve) and the adiabafic approximation 
(dashdotled curve) are almost on the same track in the present case. 

2 

1 

P 
0 

-1 

-2 
-2 -1 0 1 2 

q 

Figure 2. Same 3s in figure I except T = 1. 

3. Adiabatic invariant 

In the following sections we will focus our attention on the accuracy of the conservation 
of the adiabatic invariant for the GHO. This is a subject extensively treated in the literature. 
Since the papers by Lewis [18] and Symon [19] we h o w  how to compute an exact invariant 
by solving a certain nonlinear differential equation. However, analytical results are rare 
and therefore no information about the properties of the adiabatic invariant can be easily 
extracted. Direct analytical computations of the adiabatic invariant are possible just for 
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very few models. Hence, accurate analytical approximations will, certainly, be welcome. 
Our programme is then the following. First of all, we shall fit the ACME to perform such 
calculations for arbitrary time intervals. Then we shall discuss an asymptotic approach. 
Finally, we shall study the problem under the perspective of exponential asymptotic analysis 
of ordinary differential equations [2&26], i.e. without resorting to the ACME, in order to 
compare results. 

Suppose given (12), the GHO Hamiltonian with one degree of freedom depending on the 
parameters X, Y ,  2 which vary slowly so that they tend sufficiently fast to definite limits 
as r = e t  + &W. Then there exist the limit values J(+w) and J(-00) of the adiabatic 
invariant J(r)  H ( r ) / o ( r ) ,  and we can speak about the increment of J 

AJ = J (+W)  - J(-CO) (24) 

i = - o Z ( E t ) X  o(ku) = o* (25) 

with analytic frequency @ ( c l )  > co& > 0, this increment is an exponentially small 
quantity in I / E  1271. Furthermore, it is possible to compute explicitly the leading term 
in the asymptotic expansion of AJ when E + 0 I l l ,  20, 24, U]. Similar results have 
been obtained for linear systems with several degrees of freedom [23]. If the function 
@(a) E C"(-~O, +CO) then the asymptotic expansion for AJ is [9J 

over the infinite time interval J - 00, +CO[. For instance, for the simple linear oscillator 

AJ = O(E") for every n 

and thus in the limit E + 0 this change decays faster than any power of E .  

Consider a finite time interval instead of an infinite one. Now we introduce 6 J ( r ,  70) = 
J ( r )  - J(z0).  We do know that the adiabatic invariant changes very little after a time of 
order 116. We can pose the question about how much the instantaneous action variable 
changes after a time interval much longer than 116. In the following we envisage giving a 
quantitative answer. 

The instantaneous value J ( r )  of the adiabatic invariant (or action variable) for the GHO 
is simply 

J ( r )  -iPR(r)qR(r). (26) 

Let us denote by mfj (i, j = 1,2) the r-dependent matrix elements of Mk. Then, from (5), 
(8) and (26), it is clear that the exact expression for S J  is given by 

J J ( r ,  50) = -i [mll(r)mzl(r)q:(ro) + m z z ( r ) m l z ( r ) p W  

+ (mi i (~)mzz(r )  + m~z(r)mzl(r) - l)qR(rO)PR(rO)] . 

Ijtll-ae-20m21 = O  ~ 

(28) 
m z 2  - fie+"m12 = 0 

These equations are the starting point for studying non-adiabatic effects in the GHO without 
resorting to the Magnus expansion. 

In view of (27) any method which improves the AA (mil = m22 = 1,  ml2 = m21 = 0). 
leads in general to non-vanishing U. If we use (20) to compute approximately the functions 
mij(r) (i, j = 1,2). we obtain the first-order ACME correction to the adiabatic invariant 

(27) 
For later usage we point out explicitly that according to (9) and (17) mij satisfy 

r i z l  -fie+&mll = O  

m12 - ae-?mm,2 = 0. 

+ h ( t ) ~ h ~ ) ]  + 2(sinhtl(r))'qR(ro)PR(roO) 
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where hl , hz, 7 were already defined in (22). This is our new expression for the increment of 
the adiabatic invariant 6 3 along the interval [TO, r J in terms of quadratures, and it constitutes 
a valid approximation only if the integrals in (22) converge. In principle this scheme to 
compute 63 can be iterated one can evaluate higher orders in the Magnus' expansion of 
M i  and subsequently obtain corresponding expressions for 6.7. The accuracy of such a 
procedure rests on the convergence properties of the Magnus expansion, about which very 
little is known. 

4. Asymptotic analysis of AJ 

Often an asymptotic determination (e + 0) of the quadratures in (22) is possible. If we are 
interested in infinite time-intervals, the leading contribution to integrals may sometimes be 
computed. Our purpose here is to study the behaviour of (29) under the above hypothesis. 

For simplicity we consider the simple timedependent harmonic oscillator, obtained from 
the GHO with parameters X = &r), Y = 0, Z = 1 .  In this case, equation (29) leads to 

(30) 

where w- was defined in (25) and 

i.e. first-order ACME gives AJ in terms of only one integral. Equation (31) has already been 
studied in the literature in connection with the above barrier onedimensional scattering 
problem [28]. So here we will merely adopt the appropriate hypothesis for the frequency 
and subsequently will apply those results. 

For complex r the equation 5 =~ @(r) defines a mapping from the r-plane into the 
plane of the complex varidble 5 .  This transformation takes the integral ]c of (31) into 

J-m 

where 
1 dw 1 dw 

2wdt  2w2dr 
x ( 5 )  = -- = -- (33) 

Now we assume [24] that w ( r )  is analytic on a neighborhood N of the real z-axis. A 
fundamental role in the asymptotic analysis is played by the set U of roots, isolated singular 
points and branch points (collectively called bansition points) of such a type that 

holds true in the vicinity of r,. Assuming that U has no limit point, 0 c glbulIm(l = m 
and that no other boundary point of N has IIm ( I = m, we can shift the path of integration 
of the Fourier integral (32) to the line Im5 = -m. This line contains a finite number of 
transition points and U z -2 at each, because points with U c -2 in (34) are excluded 
from the domain of @(r) .  
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For the simplest case of a root r, an analysis of the structure of x ( c )  near cc = @(r,) 
and some additional hypothesis on its behaviour on the Stokes line Im{ = ImC, = -m, 
along which integration takes place, leads to [24, 251 

as E + 0. Substitution of (35) into (30) immediately reveals the exponentially small 
character of AJ:  

(36) A J N -  ‘ Z V  e-”/c [w-rpqi(-w) + w:’rp*pi(-co)] +o(e-””) 

where rp exp((2i/~)Rec,). 
In the case of several transition points 51, <z, . . . , ck with Imzi, = -m, each transition 

point makes a separate, additive contribution to IC given by (35), with the corresponding 
value of v characterizing the particular point provided that Ici+~ -<(I >> E [261. 

The above result coincides with that obtained in first-order asymptotic perturbation 
theory, showing, at least partially, the consistency of the method. We expect that the 
,performance of the present exponential perturbation theory holds beyond the extreme case 
E -+ 0, unlike asymptotic perturbation theory. 

Alternatively, more elaborated methods to compute AJ in the limit E --f 0 are 
available [24-2-51, They proceed directly from the ordinary differential equations satisfied 
by mij, (28). Unlike the ACME, they work only for infinite timeintervals, and systematic 
improvement of their results is not possible at first. Here we present one of them in order 
to compare results in section 5 for some examples. 

Assuming that mlj = m22 = 1; ml2.mzl < 1 in Mi,  the first-order non-adiabatic 
corrections are obtained. Thus, we only need to look for the asymptotic form of mlz and 
mzl when T + +ca to compute the asymptotic behaviour of A J .  

Standard asymptotic analysis for ordinary differential equations and the assumptions 
that X, Y, 2 can be analytically continued into the complex r-plane and that there exists a 
transition point $ of the type (34) for w’(r) lead directly to [3, 20, 261 

v + 2  

(37) 
where now cc = J,T’w’(r)dr, k- = k(-ca)  and w‘ is given in (19). The plus, minus 
signs correspond to the cases w‘ = ~ J E  (i.e. the simple harmonic oscillator), w’ # W/E, 
respectively. According to the analysis by Meyer [NI, in the first one we can take U > -2, 
whereas in the general case -2 c U c 2. 

This asymptotic expression for AJ has the same structure as the one obtained previously 
in the literature [3, 11, 20-251 for the simple linear oscillator. However, as already noted 
elsewhere [3], for the GHO ( includes a geometric contribution (i.e. explicitly independent 
on E) besides the known dynamical one (which does depend explicitly on the timescale). 
This feature is evident in the ‘amplitude’ factor (exp[-2/ImCcl]) as well as in the ‘pre- 
exponential’ factor. 

5. Illustrative examples 

In the present section we deal with three specific examples. They have been chosen in order 
to embrace very different behaviours of the frequency w and our aim is to appreciate the 
performance of the Magnns method. We compute the change in the adiabatic invariant AJ 
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(a) by numerical integration of the equation of motion and (b) by applying the first-order 
ACME, (29). For one of the examples we include asymptotic results too. 

In all cases we analyse an infinite timeinterval but for computational reasons we must 
take finite values t+, T- as the limits in the integrals of (22). For the same reason, t- and 
r+ will be our initial and final times, respectively, when solving numerically the equations 
of motion. Numerical results show that for these examples the final value of (AJI does not 
depend on the particular election o f t+ ,  r- provided their absolute values are large enough. 

The two first examples concern the GHO. The last one shows first-order ACME 
computations for the simple timedependent harmonic oscillator. 

Example 1 

As a first application we choose the following definition for the parameters of the GHO: 

X ( r )  =/E+ cosht  b coshr 

bZ 
Y ( r )  = c2- - J cosh2 r 

where a, b, c are constants such that a # 0, a > c. The frequency is given by 

1 
o(r)  = a2 - c2 + - J cosh r (39) 

whence o(r )  > 0 for all real r and o -+ 

zp = i(2n -k l)n/2, n = 0, &l,  . . . and w(r,) = 0 at points rc such that 

= 
The function &r) is analytic in a strip along the real r-axis. Its poles are located at 

> 0 as s + &w. 

-1 
a - c  

cosh r, = @ - 2 2 '  (40) 

We can distinguish two cases: 

The full curves in figures 3 and 4 correspond to the exact numerically evaluated function 
IAJI = IAJI(c) whereas the dotted curves illuseate the first-order adiabatic Magnus 
approximation to this function. Inputs in figure 3 are a = 3, b = 0.1, c = 2 (@I c 1) and 
in figure 4 a = 3, b = 0.1, c = 2.97 (141 > l), so they are illustative of the two cases just 
quoted and show how the @ value affects the shape of the curves. 

In figure 3 our approximate [AJI obtained with the ACME and the exact numerical result 
are virtually indistinguishable even for large values of E .  On the other hand, albeit the global 
agreement in figure 4 is worse than in the preceeding one, it is important to notice that the 
approximation remains very close to the exact result for all values of c and not only in a 
neighbourhood of c = 0. 
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0.08 

0.04 

AJ 

0.02 

0.00 
0 2 4 6 8 10 

E 

Figure 3. Change in the adiabatic invariant versus the slowness pmmeter t for the GHO in 
example 1.  Input values are a = 3, b = 0.1, c = 2. The full curve stands for the exact rrsult, 
The dotted curve corresponds to the first order of ACME. In the present case both culves appear 
on the same track. 

Figure 4. Same as in figure I except c = 2.91. 

Example 2 

The second example that we analyse is the GHO with parameters 

b 
X ( s )  = a  + - 

cosh s 
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b 
Z(t )  = a - - 

cosh t 

where, again, a, b, c are constants such that a # 0, a > c. In this case w = = 
const > 0 for all real or complex r ,  i.e. no transition points exist at any value of t. Results 
concerning this situation are illustrated in figures 5 and 6, where lines are coded as in 
figure 3. Input values in figure 5 are a = 3, b = 0.1, c = 2, whereas in figure 6 a = 3, 
b = 0.1, c = 2.97. Now there is no visible difference between both exact results and the 
approximate IAJI obtained with the ACME. It can be shown that the two values of IAJI 
agree up to the fourth decimal digit, irrespective of the E considered. 

Example 3 

Next we take a simple hannonic oscillator whose frequency is given by 

It was analysed by Wasow [E]. Clwly, w(t) z 0 for all real r and its limits at infinity 
are w- = 1 ,  w+ = fi. For complex t one finds that wz is meromorphic with simple zeros 
at r, = i(2n + 1)n and simple poles at z,, = log 2 + i(2n + 1)n with n E 2. 
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Then a straightforward calculation yields 

and one concludes that rc = -in is the transition point that satisfies all the properties 
enumerated in the sequel of (34). For this point U = 1 and Jmc, = JmO(rc) = -n. We 
obtain as L --f 0 

[ A J I  N ~ e - ~ / ~  +o(e-2n/f) (44) 

The constant p = n/3 or 1 depending on whether (36) or (37) is used. 
In figure I we show the ‘prefactor’ ek/‘lAJI as a function of E .  The full curve stands 

for the exact numerical computation. The dotted line represents our first order ACME (29). 
One can see the extremely good agreement between these two procedures. For the sake of 
comparison we have also plotted the asymptotic result P given by (equation 45) with both 
values of p.  Initial conditions are ~ R ( - w )  = 1, PR(-CO) = 0 in all cases. 

6. Conclusions 

We have constructed an adiabatic method based on the Magnus expansion which works as 
a symplectic integrator for the time evolution. The method is well adapted to linear time- 
dependent systems and its utility has  been illustrated by calculating trajectories in phase 
space as well as changes in the adiabatic invariant. The different illustrative examples we 
have worked out tell us that the trajectories in phase space and the adiabatic invariant are 
pretty well fitted by ACME. 

Here we have computed only the first-order ME albeit higher orders are, in principle, 
recursively calculable. Even so, we would enhance the impressive agreement reached 
between the exact numerical and approximate results shown in different figures where the 
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range over which the slowness parameter runs is by no means small. If it is, the ACME may 
still work in intermediate regimes and not merely in the adiabatic one. Due to the difficulty 
in finding out analytical methods valid outside the adiabatic and sudden h i t s  this feature 
constitutes by itself a novelty. 

We think that the ACME for linear systems is henceforth well established and the degree 
of performance attained encourags extending the algorithm to nonlinear systems. 
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